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group in this state of PhN. This delocalization is favorable en­
ergetically because in 1A2 the nonbonding a and IT electrons have 
opposite spins, so that the motions of these two electrons are not 
correlated by the Pauli exclusion principle. Hence, in the 1A state 
of HN these two nonbonding electrons have a large Coulombic 
repulsion energy.14 However, in PhN, delocalization of the IT 
electron into the phenyl group allows these two electrons to occupy 
different regions of space, thus minimizing their Coulombic re­
pulsion energy.14'15 In carbenes, too, an adjacent ir bond provides 
selective stabilization for the open-shell singlet state (1A").16,17 

Despite the selective stabilization of 1A2 in PhN, we still com­
pute it to lie about 18 kcal/mol above the 3A2 ground state. As 
shown in Table I, neither this calculated energy difference nor 
that between the 'A and 3S" states of NH shows much sensitivity 
to the amount of electron correlation provided. 

As is the case in calculations on methylene,18 the results of our 
calculations and previous12 calculations on HN suggest that very 
large basis sets appear to be necessary to correlate the two electrons 
of opposite spin in the lowest singlet, since both are localized on 
nitrogen. However, in the 1A2 state of PhN the delocalization 
of the v electron into the phenyl group should allow a modest basis 
set, like 6-3IG*, to provide a much more accurate value than in 
HN for the energy difference between this singlet and the triplet 
ground state.19 It is probably for this reason that our calculated 
value of 18 kcal/mol for the energy difference between 1A2 and 
3A2 in PhN20 is in excellent agreement with two very recent 
measurements of this energy separation,21 both of which came 
to our attention after our study was completed, and with a rein-
terpretation,22 based on our computational results, of the photo-
detachment spectrum obtained by Drzaic and Brauman.3 
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This communication is concerned with the spectroscopy of the 
most famous organic nitrene, phenylnitrene.1 Our approach to 
the study of C6H5N is to scrutinize the photoelectron spectrum 
of the radical anion, C6H5N". The negative ion photoelectron 
spectra furnish us with a measure of the electron affinity of 
phenylnitrene: EA(C6H5N) is 1.45 ± 0.02 eV, and EA(C6D5N) 
is 1.44 ± 0.02 eV. The photoelectron spectrum of C6H5N" is 
composed of an extensive Franck-Condon envelope, which suggests 
that the electric charge is strongly delocalized over the radical 
anion. Besides detachment of the C6H5N" ion to the ground state 
of phenylnitrene, X 3A2, our spectra also contain bands which we 
attribute to the singlet state of C6H5N, a 1A2. The approximate 
A£ST is 18 ± 2 kcal/mol. 

Using phenylazide as a precursor, we prepared negative ions 
in a hot cathode ion source and extracted the negative ions to form 
an ion beam with an energy of 700 eV. The C6H5N3 was syn­
thesized in roughly 10 g quantities from phenylhydrazine and 
sodium azide,2 the deuterated isomer requiring preparation of 
phenylhydrazine-^5 from aniline-rf5. The C6H5N" sample was 
prepared by leaking a mixture of C6H5N3 and N2O gases into the 
plasma source with a 0.015 in. W filament at a pressure of 0.1 
Torr; ion beams of 1-3 nA are commonly achieved. We use the 
488-nm (2.540 eV) line of an Ar II laser in an intracavity con­
figuration to study the photoelectron spectrum of the phenylnitrene 
anion.3 

C6H5N-(J; V O + ft«488nm- C6H5N(^VO + e"(KE) (1) 
Photodetached electrons are energy analyzed in a hemispherical 
electrostatic analyzer with a resolution of about 10 meV (FWHM) 
as measured by photodetachment of a calibration ion, 0". 

The photodetachment of C6H5N" has been studied in an ICR 
spectrometer,4 and the detachment threshold for the phenylnitrene 
ion was observed at \,hresh = 848 ± 8 nm, which corresponds to 
an EA(C6H5N) of 1.46 ± 0.01 eV. The electron affinity deter­
mined in this experiment is completely in accord with both 
threshold electron affinities. Figure 1 depicts the photoelectron 
spectra of the C6H5N" and C6D5N" ions. The origin of these 
spectra is feature A; assignment of the (0,0) band leads to raw 
electron affinities of the nitrenes. Proper consideration of the 
rotational, spin-orbit, sequence band shift and scale compression 
corrections provides us with our final electron affinities: 
EA(C6H5N) is 1.45 ± 0.02 eV, and EA(C6D5N) is 1.44 ± 0.02 
eV. The ions in Figure 1 are rotationally hot, and this results in 
extensive congestion of the photoelectron spectra; we estimate 7"rot 
to be roughly 1200 0C. Figure 2 shows a Franck-Condon fit to 
the first band system in the C6H5N" spectrum; this simulation 
ignores features near the /3, y, and 8 bands. The active modes 
in our simulation are a phenyl ring/C-N distortion at 1300 cm"1 

and a ring-breathing vibration at 515 cm"1. While we only have 
an approximate fit to the Franck-Condon profile, it seems certain 
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Figure 1. (Top, a) Photoelectron spectrum of C6H5N". The CM kinetic 
energies (in eV) of the bands are as follows: b, 1.218 ± 0.025; a, 1.154 
± 0.020; A, 1.094 ± 0.012; B, 1.032 ± 0.010; C, 0.974 ± 0.014; D, 0.917 
± 0.020; /3, 0.510 ± 0.025; 7, 0.451 ± 0.025; h, 0.394 ± 0.025. (Bottom, 
b) Photoelectron spectrum of C6D5N". The CM kinetic energies (in eV) 
of the bands are as follows: a, 1.161 ±0.025; A, 1.100 ± 0.012; B, 1.041 
±0.015; C, 0.985 ±0.020. 
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Figure 2. Franck-Condon simulation of the C6H5N" photoelectron 
spectrum. The points are the data, and the solid line is our fit. The 
precise constants used in the simulation are combinations of O)1" = 500 
cm"1, oj,' = 515 cm"1, u2" - 1350 cm"1, and w2' = 1300 cm"1; we estimate 
an effective vibrational temperature of rvib at approximately 300 0C. 

that there is only one state of C 6 H 5 N present in the region of the 
A - D features. This is the ground X 3A2 state of phenylnitrene. 

The weak features in our photoelectron spectrum at low kinetic 
energy (8, 7, and S) are associated with a second electronic state 
of phenylnitrene. A preliminary spectrum5 with an Ar III laser 

(5) Gilles, M. K.; Cowles, D. C; Travers, M. J.; Ellison, G. B.; Lineberger, 
W. C. Unpublished results. Complete Ar III photoelectron spectra of C6H5N" 
and C6D5N" will be published in a later, full paper. 
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Figure 3. A symbolic comparison of the electronic states of NH with 
C6H5N. Delocalization of the charge in C6H5N" results in an increase 
in the electron affinity relative to NH"; delocalization6 of the radical in 
the a 1A2 state of C6H5N lowers the exchange integral, K„, leading to 
a diminished A£ST(C6H5N). 

(ftw35inm) has clearly revealed the entire second electronic state 
of C6H5N. The weak features in our 488-nm spectrum (B, 7, and 
5 in Figure 1) correspond to detachment from hot bands of the 
ion [(a 1A2) C6H5N(y'=0) *- (X 2B2) C6H5N"(i;"=l(2,3)]; 
scattered electrons from the (0,0) band for the (a 1A2) C6H5N 
*- (X 2B2) C6H5N" transition would appear at 0.29 eV, which 
is just outside the transmission energy of our hemispheric analyzer. 
This electronic state corresponds to the first singlet state of 
phenylnitrene (5 1A2) that has an approximate6 A£ST of 18 
kcal/mol. 

The ground states of several nitrenes have been studied by EPR 
spectroscopy, and all but aminonitrenes are known to be triplets.7 

Phenylnitrene can be written as a localized diradical with a (p̂ ,p̂ ) 
pair of electrons triplet-coupled. Consequently the ground state 
of C6H5N is X 3A2, and we can represent our negative ion pho-
todetachment experiment as 

[ 

fia 
C 6 H 5 N 'B 1 

(2) 

Equation 2 suggests that we need to consider two different states 
for the C6H5N" ion. One of these, 2B2, is a (<nr2) species while 
the 2B1 state is a (<r2ir) ion. The extensive Franck-Condon en­
velope in Figures 1 and 2 is a clear indication8 that the ground 
state of the C6H5N" ion has a substantially different geometry 
than C6H5N. This is to be contrasted with the simplest nitrene, 
HN. The photodetachment spectrum9 of the localized ion HN" 
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M. L.; Lineberger, W. C. Int. J. Mass Spectrom. Ion Processes, in press. 
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(2II) is a pair of vertical transitions, one to the ground state of 
NH (3S-) and the other to the excited singlet state, 1A. The 
extended Franck-Condon contour in our photodetachment spectra 
with excitation of ring-breathing modes implies that the ground 
state of the C6H5N" ion is X 2B2 and that much of the charge 
is delocalized from the N atom onto the phenyl ring. This contrasts 
with the A 2B1 ion which localizes the extra electron in the b2, 
nonbonding orbital, on the N atom. Preliminary UHF calcula­
tions10 on both states of the C6H5N" ion in a 6-311++G** basis 
lead to the 2B2 state being stabilized by about 10 kcal/mol below 
the 2B1 state. Figure 3 is a symbolic drawing which contrasts the 
electronic states of NH with those of C6H5N. 
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NodRm-IV (S) (1) and NodRm-IV (Ac1S) (2) are sulfated 
lipooligosaccharides of N-acetyl-D-glucosamine secreted by the 
microorganism Rhizobium meliloti .1^ These remarkably specific 
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Scheme I. Structures and Retrosynthetic Disconnections of 
NodRm-IV Factors (1-4) 
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compounds play a crucial role in the Rhizobium-legume symbiosis 
by eliciting the formation of nitrogen-fixing root nodules and root 
hair deformation on alfalfa but not on vetch. Interestingly, the 
non-sulfated compounds NodRm-IV (Ac) (3) and NodRm-IV 
(4) elicit the same organogenesis and root morphology on vetch 
but not on alfalfa.5,6 Experiments with mutant strains of R. 
meliloti identified the genes responsible for the sulfation of these 
lipooligosaccharides.7 The important actions of these molecules 
coupled with their fascinating specificity, natural scarcity, and 
challenging molecular structures prompted us to target them for 
chemical synthesis. Herein we report the first total synthesis of 
these substances (1-4) in their naturally occurring forms. 

Despite their repetitive nature in glucosamine units, the 
structures of NodRm-IV factors (1-4) are synthetically quite 
challenging due to the presence of unsaturation, nitrogen, and 
sulfur. This variety of functional groups required a carefully 
designed and executed strategy. Scheme I presents the retro-
synthetic analysis on which the synthesis was based. Thus, dis­
connections at the indicated bonds led to key building blocks 5-8. 
The projected construction called for an a, b, c, d sequence of 
coupling reactions and selective deblocking of hydroxyl groups. 

Coupling of glucosamine derivative 5 with glycosyl fluoride 6 
under the Mukaiyama-Suzuki8 conditions led to disaccharide 9 
with a /3-glycoside linkage as expected from the directing effect 
of the V-phthalimido group (Scheme II). Liberation of the 4'-OH 
group followed by attachment of a second glucosamine unit 6 as 
above resulted in the stereospecific formation of trisaccharide 11. 
Having performed their function as activating and /3-directing 
groups, the phthalimide moieties were removed with hydrazine, 
leading to the triamine 12, which was acetylated to afford the 
triacetamide 13. Introduction of the final glucosamine unit was 
accomplished using derivative 7 and the above mentioned con­
ditions, furnishing tetrasaccharide 14 stereoselectively. Generation 
of the free amine functionality from 14 as described above allowed 
the incorporation of the unsaturated fatty acid chain 8 through 
intermediate 15 and the action of 2-chloro-l-methylpyridinium 
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